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ABSTRACT

PennisonGarland P, Ph.D, P.E.,University of South Alabamd@ecembef02Q A
System<£Engineering Approachor Evaluating Coastal Road System Reliabiliging
Cumulative Celerity Dispersion Functior@hair of CommitteeBret M. Webh Ph.D,
P.E.

This research applied systems engineering to coastal roads in evaluating system
architecture and relmlity functions. The coastal road systems interfaces are quite
complex since system boundaries extend well beyond the system of interest. Because of
the interdependence of mobility and modality in the functioning of coastal road systems,
determining wherfailure occurs requires defining when the system no longer can meet
the systems functional and operational requirements. Without preserving connectivity to
users and other transportation systems, even if the system is physically intact, the coastal
road syptem may not meet its functional requirements.

Local coastal roads represent the system of interest for assessing system
engineering functional requirements. The local coastal road designation includes those
roads that primarily serve local communitgesl represensystemsmostvulnerable to
coastal hazard& semiempirical function that predicts likelihood of system failure
during extreme events provides an opportunity to reduce risk and improve coastal

transportation system resilience. A resilient agsis a priority for transportation

agencies in managing changing climate risks.

XV



Functi onal adaptation requires optimizi
system failure caused by changes in climate and extreme weather events. Using coastal
hydrodynamic intensity measure (IM) output from a dynamically coupled
ADCIRC+SWAN hindcast of Hurricane lke (2008), we demonstrate that a Fuastel
cumulative celerity dispersion (CCD) function enables development of coastal road
system fragility functionghat predict likelihood of damage for roads subjected to storm
surge and wave forcing.

These CCD functions, evaluated at random locations along County Road 257
(Brazoria, Texas, USA) relative to offset distance from shoreline; and using discrete
water suface elevation, wave period, and velocity hourly IM data; strongly predicted the
likelihood and relative degree of coastal road damage states resulting from Hurricane Ike
with R?> 0.99. The CCD functions also validated US 90 road system damage from Bay
St Louis to Bil oxi Bay due to Hurricane Kaf

This work demonstrates that the likelihood and degree of road damage caused by
a significant coastal storm event is primarily a function of the cumulative wave celerity
dispersion at a given location. While component fragilities are important, component
failure mechanics appear to be secondary relative to cumulative celerity dispersion and
sediment transport as primary causal factors. The innovative CCD function css asse
and mitigate coastal transportation infrastructure risks to improve road system
functionality and resiliency and may have broader applications for describing damage to

the built and natural coastal environments during hurricanes and other extreme events

XVi



CHAPTER |

COASTAL ROADS 7 SYSTEM OF INTEREST

The cumulative celerity dispersion (CCD) funcsgmesented in this dissertation
strongly predicts likelihood of coastal road failamedconsequentiallguggestpotential
solutions that reduce risk and improve reliabifiy coastal roadsA grant from the
Colorado State University (CSU) Center for RB&sed Community Resilience Planning

to theUniversity of South Alabamprovided doctoral research funding.

1.1 Transdisciplinary Systems Research

Wikipedia describesa testbed aa platform for conducting rigorous, transparent,
and replicable testing of scientific theories, computational tools, and new technologies.
The termappliesacross many disciplines to describe experimental research and new
product development platforms aedvironmentsThe Colorado State University (CSU)
National Institute of Standards and TechnolagiS(T) fundedCommunity Resilience
Center of Excellenc@CoE)in Fort Collins, COproposed usinthe significantly
impacted area dbalveston, TXwhereHurricane Ikemade landfalbn September 13,

2008 to understand and model community damage, loss, and recovery from hurricanes.
Hurricanes represent a mdiftazard problemwith strong winds, storm surgesin, and

related flooding that can persist for days.



Duringthese natural hazards, there are cascading conseguences that increase
damage and inhibit rescue and recovery effdie Galveston testbeam(seeFigurel
andFigure?) identifiedhousing recovery as a key indicator of community resilience,
including theinfrastructuranterdependencies among the building, roads, water supply
wastewaterand electric power network¥he INCORE Model evaluates community
impacts during extreme natural disaster events and quantitedassdgse®silienceof
these community infrastructisystems By accurately quantifying risks using a physics
based model, commurgs can assesalternativeresiliency measurdsr infrastructure
systems

The University of South Alabama represented by the principal investigators of Dr.
Scott Douglass, Professor Emeritus; and, Dr. Bret Webb, Professor, teamed with Dr.
Jamie Padgett, Professor at Rice University and Dr. loannis Gidarid)Bctstral
Researchr, in assessing fragility functions associated with transportation systems and
coastal road damage during Hurricane Ike Yarusef Mohammadi Darestani

subsequently advanced the research work

1 https://ssa.ncsa.illinois.edu/isda/projectslare/



https://ssa.ncsa.illinois.edu/isda/projects/in-core/

Task 3.2.4: Galveston Testbed

Collaborators: Dan Cox (OSU), Andre Barbosa
(OSU), Eun Cha (UIUC), Jong Sung Lee (UIUC),
Jamie Padgett (Rice), Walter Peacock (TAMU),
Shannon Van Zandt (TAMU), Dorothy Reed (UW),
John van de Lindt (CSU), Elaina Sutley (KU), Bret
Webb (USA), Greg Holland (NCAR), Sara Hamideh
(Iowa State)

Post-Docs & PhDs: Navid Attary (CSU),
Mohammad Ameri (CSU), Yanlin Guo (CSU),
Nathanael Rosenheim (TAMU), Maria Watson
(TAMU), Kijin Seong (TAMU), Donghwan Gu
(TAMU), Yu Xiao(TAMU), Ioannis Gidaris (Rice),
Sushreyo Misra (Rice), Tori Johnson (OSU), Stanley
Wang (UW), Jose Leon (UW), Garland Pennison
(USA), Xian He (UIUC)

NIST collaborators: Long Phan, Marc Levitan,
Maria Dillard, Ken Harrison

Figurel. IN-CORE Galveston Tesd Model, Task 3.2.4. Research Team.

Figure2. Research Team attendeeS&atveston Tesied Modelmeetingat Rice
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1.2 Portfolio Review

Chapter | presents coastabad systemas the system of interest from a system
thinking perspectivelt includes a gneral overview of coastal hazards, resiliency,
systens modelng, andthe systems engineering reseamblectivesrelaiedto coastal road
systens. It also provides an overvieof researctihat advanced requisite knowledge
base for the system of intereghe original research objective intended to develop
fragility functions using probability theory. When the correlatidfailed statdo wave
celerity became evident, the eesch direction changed to proof of concept associated
with that finding.

Chapter Il provides an overview of risk amdliability analysismorefrom an
interdisciplinaryc i vi | and coastal engineerds perspeq
observed for CR 257 his chapter represents the study period in which correlations
between CCD functions relative to damage became evident and research focused on
assessing the validity asibnificance of that finding. It provides an overview of the
stausof systemgeseach relative to assessimgsiliene and reliability of coastal roads
subjected t@oastal hazardsamage fronincreasing storm frequency and intensity.

Chapter Il presentsmlnstitute of Industrial & Systems Engineers (IISH)18
conference papégt], whichproposs sociotechnical and system functional requirements
for the next generation of local coastal raafis Integration Definition (IDEFO) function
model organizes decisions, actions, and activities for subsysteaaluating the
integrated system architectu8ystematic analysis and functional decomposition provide

a next generation approach for plannisiting, and designing local coastal roatisis



paper worthe BestSustainability DivisionConference Papaward athe [ISE 2018
Annual Conference in Orlando, FL.

Chapter IV present&anlISE 2020conference paper addressing the benefits of
applying trasdisciplinary systems thinking in assessing coastal systems sustainability
and in developing the HKCORE modelThis paper also provides a discussion of the
challenges associated with integrating researchers from various disciplines and specialties
in working to create a coherent whole. It finds great applicability when systems
engineering is critical to the core research objective.

Chapter V presents an IISE020 onferencgpaperaddressing the benefits of
systems analysit assess cause and effectdoastal roadway damagéenimpacted
by coastal storm surge and wave hazards. Evaluatin@GRefunction assists with
identifying probable damage failure mechanisms at critical damage limit states.
Identification of failure mechanisms facilitates desigmidtigating features to reduce
damage likelihoodThis paper wonhe ISE 2020Annual Conferenc8estConference
Division Conference Papeaxvard

Chapter VI presents @aper proposed for publication in a special issue of the
CoastaEngineering Journal entitlgdioastal Hazards and Risks due to Tropical
Cyclonegabstract submittedY his papepresentsietailed hydrodynamics associated
with development of the CCD and psetfelmude models and application to coastal road
damage with twanajor hurricane events on the Gulf Coast. apemrepresents core
researchhat proposes at leasn8w findings related tooastal engineeringystemsand

the role of wave celerity functions in predicting the likelihood and degree of damage



Chapter VII provides an overview of the key research findings and other
information not includedn previous chapte@ndprovides recommendationfor
continuedresearch. lalsoprovides recommendations for continued development and
research relative t6CD functons and application of systems engineering to coastal road
systemsClimate and cultural changesll requirecoastal road systemiand use
corridors the naturalenvironment multimodalusers and built infrastructuresystems, to

all be reimaginedt closes by identifying future research needs relatedisavork.

1.3 Increased Risks fromCoastal Hazards

Climate change and increased populations increase economic and life safety risks
along coastlines. Whilenpacts ofcoastal hazards reasonably discourage further
development in atisk environments, development of properties and built infrastructure
in coastal environments continues with correspondingly increased[Bkksnhanced
resiliency of coastal infrastructure and structures reduces risks and expedites recovery.
Multihazard risks require a systematic approach in defining and evaluating system risk,
resiliency, vulnerability, and sustainability. Improved systems analysisastaidhazard
systems with reduced uncertainties also assists with moving the engineering design
profession towards greater use of +isdsed design methodologies.

Coastal hazards include storm surge, waves, currents, and storm duration from
significant castal events such as hurricanes, cyclones, typhoons, super storms, and
norbeasters. Coastal transportation system
[3-5]. Risk evaluation requires developing models that systematically identify, quantify,

and evaluate resiliency associated with fragility and recovery curves for environments,



populationsand infrastructure exposed to these risks. Since resiliency includes the ability
to prepare for and adapt to changing conditions, correctly evaluating failure modes of
coastal transportation systems and components is essential to progressing coadtal hazar

risk models.

1.4 AssessindResilienceof Coastal Infrastructure

Defining resilience with consistent terminology and quantifiable metrics is a
critical first step in advancing a systematic approach to resiliency studies. Complex and
diverse resiliency maals result in ambiguous definitions applied to widely varying and
complex multihazard systems. Review of literature shows widely varying resiliency
system models. AyyufB] suggestda universal definition of resiliency that includes
Aféthe ability to prepare for and adapt t
rapidly from disruptions. 0

Ayyub suggestedhat monotone measures provide a broader model framework
than probability theory for resiliency metrics by replacing additive property of probability
with the weaker property of monotonici#.monotonemeasure requires th&tA is a
subset of B, then hmeasure of A is less than or equal to the measurewnéi Bie
measure of the empty seust bed. Each increasing and decreasing subset sequence
must besemicontinuousvhen evaluateétfom below and above

Measurableesiliencymodel functiondailure and recoveryrofiles with
resilience as a function of thegerformance profiles arttdme. Ayyub theorizes that

impacted systems respond and recover differently based on failure type and infrastructure

o



performance trajectories before and aftepvecyas shown irFigure3. Brittle, ductile,

and graceful categoriziifferentpotential failure modes.
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Figure3. Resilience metrics propaséy Ayyub in Figure 36] and Figure 4.1(7].

Distinct quantifiable events relate p@&stent recovery to prevent conditions,

recognizing that varying rates of system performance recovery are critical components of

aneffective modelDegradation termsiodelsystem deterioration relative to design life,



or alternately, positive improvements made during recovery. Performance segregation
metrics estimate various levels of performance breakdown during an event relative to
overall performance at a system level.

Economic valuation and benefibst analysis assesses the effectiveness of system
enhancement alternatives in improving resiliency. Valuation includes savings in potential
direct and indirect losses, aswellassostof Ayyubés model gained
generally defining resilience metrics in evaluating system perform&)ceiith aging
effects and failure occurrence [BsA i mated w
significant problem exists with monotonic model functions simzertainties extend
well beyond time and space boundaries for most systems evaluatastakesiliency
models. System boundaridslineatingoetwe@ complex infrastructurenatural features,
and climatological or weathsystems lack definition in coastal environments.

Wu, Lo, & Wang|[8] alternately suggestithata reliability index more effectively
ranks likelihood of failure, since probalyliremains problematic when evaluating built
infrastructure risk$or natural hazards. Current challenges in reliability analysis include
lack of failuredata; difficulty in validating or calibrating calculated probability and
reliability functions; and, @arcity of statistical data for system modeliAgithors noted
that uncertainties modeled in a stochastic daetefit analysis assist with ranking coastal
infrastructure projects, including resiliency enhancem@ytstem riskdncreasen
response to stnger coastal forces with resultant damages. As uncertainty of the future
increases with climate change effects along coastlines, future adaptatiohquamse

moreunreliable.



Consequence analysis assumes critical importance when both immediate and
future consequences depend on system vulnerabilities and critical infrastructure design
decisionsReliability index methodgrovide some advantages over failure probability
methods in comparing alternatives, primarily because analysis does not require full
knowledge of probability density functions. While relative reliability methods and
stochastic codbenefit analysis reduce uncertainty for comparing risk reduction options,
uncertainties remain relatedttee probability of system failures.

Wamsleyet al.present a methodology for assessing coastal vulnerability metrics
using a comprehensiviesk assessment andinerability mode[9]. This model was used
by U.S. Army Engineer Research and Development CeBRD(C) andInstitutefor
Water ResourcesWR) to analyze the North Atlantic Coastal Comprehensive Study
(NAACS) area, to quantify the vulnerabilitf populations, infrastructure, and resources
at risk and to identify methods to improve system resilience to coastal storm damage
(seeFigurel5in Chapter Il ) [10].

The procedures and methodology described in the NAACS methodology and
linked tools arejuite extensive and provide a way to systematically evaluate geospatially
risk and vulnerability associated with coastal infrastructiineassessment fdrong
Beach Island, Nillustrates the suggestedpproach for evaluating potential impacts of
storms and sea level change and identification of coastal storm risk strategies.

The Federal Highways AdministratioRHIWA) has developed similar guidance
for coastal highwayglL1]. FHWA authorized numerous climate change resiliency pilot
projects and has published extensive documentagiative to the results of those

studies. The studies pilt¢sted the FHWA Climate Change and Extreme Weather
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Vulnerability Assessment Conceptual Model, and FHWA creatédlaerability
Assessment Framework based on feedback from these pilot p{a@Rcis]

An outcome of the assessment madeblved South Coast Engineers (SCE)
evaluatingthe previoudy installedsheetpile cutoff wall and gabion countermeasures
constructed by thElorida Department of Transportation and Development (FOIOT)
mitigateoverwas scourfor the Barrier Island Roadway Overwashing from Sea Level
Rise and Storm Surge: US 98 on Okaloosa Island, Flgidgect[14]. For that event,
the overwash was inland and the damage was to the landward side of the road due to
weir-flow damage as overtopping occurred with flow into Choctawhatchee Baytiii®
Gulf of Mexico during storm surge. TI®CEstudy includd developingan adaptation

decision matrix for engineering considerati@amslalternativeevaluations

1.5 Applying Systems Models tadCoastal Roads

This researclapplied systems engineeringdoastal roaslin evaluatingsystem
architecture and reliability functions. Theastal roadystems interfaces aggiite
complex since system boundaries extend well beyond the system of irBeresise of
the interdependence of mobility and modality in the functioningpattal roadystens,
determiningwhen failure occug requires definingvhen the system no longean meet
the systems functional and operatiorejuirementswithout preserving connectivity
users and other transportation systesaen if the system iphysicallyintact,the coastal
road systenmaynot meet its functional requirements

Localcoastalroads represent the system of interémtassessingystem

engineeringfunctional requirementg§ helocal coastalroad designatiomcludesthose
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roads maintained by municipi@s, countiesor secondartate roads that primarily
serve local commuties. It represents systems not intended for highume traffic and
likely more vulnerable to coastalhazar@sR 257 i n Brazoria County
Island is one such exampBystemfunctionalrequirements wermitially developed
using COREM software[15].

Local coastal roads weraodeledwith ASTAH SysML softwareandproposed
the domain model shown Figure4 using modebased systems engineering (MBSE)
methodology{16]. Domain model captures major stakeholders and systems wiéhin th
localcoastalroad system of interegtigure5 illustrates bcal coastal road conceptual
systenrequirements and use caskeveloped fothe objectoriented (OO)SysML
decompositiormodel These figures illustrate the complexity associated with modeling
complex builtsystems in a highazard coastal environment settikgy subsystems
within the SysML modeinclude

1 Road Structure;

1 Road Corrido Enhancements;

1 Modality Interconnects;

1 Coastal Road Defenses; and,

1 Travel Control/Safety.

Within that SysML model related tmastal hazardulnerabilities are systems
involving road structure and coastal road deferndeslel assumes a representatlismed
of use cases for local coastal roads. Because of the complexityrobtietedsystem, the
level of definition developed for the model illustrates the challenge involved in applying

SysML to passive infrastructure systems.
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Figure4. Local coastalroad system domain diagrdd®].
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Figure5. Localcoastalroad conceptual systeraquirements and use ca$es).
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