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ABSTRACT 

 

Pennison, Garland, P., Ph.D., P.E., University of South Alabama, December 2020. A 

Systems Engineering Approach for Evaluating Coastal Road System Reliability using 

Cumulative Celerity Dispersion Functions. Chair of Committee: Bret M. Webb, Ph.D., 

P.E.  

 

This research applied systems engineering to coastal roads in evaluating system 

architecture and reliability functions. The coastal road systems interfaces are quite 

complex since system boundaries extend well beyond the system of interest. Because of 

the interdependence of mobility and modality in the functioning of coastal road systems, 

determining when failure occurs requires defining when the system no longer can meet 

the systems functional and operational requirements. Without preserving connectivity to 

users and other transportation systems, even if the system is physically intact, the coastal 

road system may not meet its functional requirements.  

Local coastal roads represent the system of interest for assessing system 

engineering functional requirements. The local coastal road designation includes those 

roads that primarily serve local communities and represent systems most vulnerable to 

coastal hazards. A semi-empirical function that predicts likelihood of system failure 

during extreme events provides an opportunity to reduce risk and improve coastal 

transportation system resilience. A resilient system is a priority for transportation 

agencies in managing changing climate risks.  
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Functional adaptation requires optimizing the engineered systemôs ability to resist 

system failure caused by changes in climate and extreme weather events. Using coastal 

hydrodynamic intensity measure (IM) output from a dynamically coupled 

ADCIRC+SWAN hindcast of Hurricane Ike (2008), we demonstrate that a Froude-based 

cumulative celerity dispersion (CCD) function enables development of coastal road 

system fragility functions that predict likelihood of damage for roads subjected to storm 

surge and wave forcing.  

These CCD functions, evaluated at random locations along County Road 257 

(Brazoria, Texas, USA) relative to offset distance from shoreline; and using discrete 

water surface elevation, wave period, and velocity hourly IM data; strongly predicted the 

likelihood and relative degree of coastal road damage states resulting from Hurricane Ike 

with R2 > 0.99. The CCD functions also validated US 90 road system damage from Bay 

St. Louis to Biloxi Bay due to Hurricane Katrinaôs landfall in Mississippi.  

This work demonstrates that the likelihood and degree of road damage caused by 

a significant coastal storm event is primarily a function of the cumulative wave celerity 

dispersion at a given location. While component fragilities are important, component 

failure mechanics appear to be secondary relative to cumulative celerity dispersion and 

sediment transport as primary causal factors. The innovative CCD function can assess 

and mitigate coastal transportation infrastructure risks to improve road system 

functionality and resiliency and may have broader applications for describing damage to 

the built and natural coastal environments during hurricanes and other extreme events.   
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CHAPTER I  

COASTAL ROADS ï SYSTEM OF INTEREST 

The cumulative celerity dispersion (CCD) functions presented in this dissertation 

strongly predicts likelihood of coastal road failure and consequentially suggests potential 

solutions that reduce risk and improve reliability for coastal roads. A grant from the 

Colorado State University (CSU) Center for Risk-Based Community Resilience Planning 

to the University of South Alabama provided doctoral research funding.  

1.1 Transdisciplinary  Systems Research 

Wikipedia describes a testbed as a platform for conducting rigorous, transparent, 

and replicable testing of scientific theories, computational tools, and new technologies. 

The term applies across many disciplines to describe experimental research and new 

product development platforms and environments. The Colorado State University (CSU) 

National Institute of Standards and Technology (NIST) funded Community Resilience 

Center of Excellence (CoE) in Fort Collins, CO proposed using the significantly 

impacted area of Galveston, TX, where Hurricane Ike made landfall on September 13, 

2008; to understand and model community damage, loss, and recovery from hurricanes. 

Hurricanes represent a multi-hazard problem with strong winds, storm surges, rain, and 

related flooding that can persist for days.  



2 

During these natural hazards, there are cascading consequences that increase 

damage and inhibit rescue and recovery efforts. The Galveston testbed team (see Figure 1 

and Figure 2) identified housing recovery as a key indicator of community resilience, 

including the infrastructure interdependencies among the building, roads, water supply, 

wastewater, and electric power networks. The IN-CORE Model evaluates community 

impacts during extreme natural disaster events and quantitatively assesses resilience of 

these community infrastructure systems1. By accurately quantifying risks using a physics-

based model, communities can assess alternative resiliency measures for infrastructure 

systems.  

The University of South Alabama represented by the principal investigators of Dr. 

Scott Douglass, Professor Emeritus; and, Dr. Bret Webb, Professor, teamed with Dr. 

Jamie Padgett, Professor at Rice University and Dr. Ioannis Gidaris, Post-Doctoral 

Researcher, in assessing fragility functions associated with transportation systems and 

coastal road damage during Hurricane Ike. Dr. Yousef Mohammadi Darestani 

subsequently advanced the research work.  

 
1 https://ssa.ncsa.illinois.edu/isda/projects/in-core/ 

https://ssa.ncsa.illinois.edu/isda/projects/in-core/
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Figure 1. IN-CORE Galveston Testbed Model, Task 3.2.4. Research Team. 

 

Figure 2. Research Team attendees at Galveston Testbed Model meeting at Rice 

University in Houston, TX (6/3/16). 
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1.2 Portfolio Review 

Chapter I  presents coastal road systems as the system of interest from a systemic 

thinking perspective. It includes a general overview of coastal hazards, resiliency, 

systems modeling, and the systems engineering research objectives related to coastal road 

systems. It also provides an overview of research that advanced a requisite knowledge 

base for the system of interest. The original research objective intended to develop 

fragility functions using probability theory. When the correlation of failed state to wave 

celerity became evident, the research direction changed to proof of concept associated 

with that finding. 

Chapter II provides an overview of risk and reliability analysis more from an 

interdisciplinary civil and coastal engineerôs perspective relative to failure modes 

observed for CR 257. This chapter represents the study period in which correlations 

between CCD functions relative to damage became evident and research focused on 

assessing the validity and significance of that finding. It provides an overview of the 

status of systems research relative to assessing resilience and reliability of coastal roads 

subjected to coastal hazards damage from increasing storm frequency and intensity. 

  Chapter III  presents an Institute of Industrial & Systems Engineers (IISE) 2018 

conference paper [1], which proposes sociotechnical and system functional requirements 

for the next generation of local coastal roads. An Integration Definition (IDEF0) function 

model organizes decisions, actions, and activities for subsystems in evaluating the 

integrated system architecture. Systematic analysis and functional decomposition provide 

a next generation approach for planning, siting, and designing local coastal roads. This 
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paper won the Best Sustainability Division Conference Paper award at the IISE 2018 

Annual Conference in Orlando, FL.  

Chapter IV  presents an IISE 2020 conference paper addressing the benefits of 

applying transdisciplinary systems thinking in assessing coastal systems sustainability 

and in developing the IN-CORE model. This paper also provides a discussion of the 

challenges associated with integrating researchers from various disciplines and specialties 

in working to create a coherent whole. It finds great applicability when systems 

engineering is critical to the core research objective.  

Chapter V presents an IISE 2020 conference paper addressing the benefits of 

systems analysis to assess cause and effect for coastal roadway damage when impacted 

by coastal storm surge and wave hazards. Evaluating the CCD function assists with 

identifying probable damage failure mechanisms at critical damage limit states. 

Identification of failure mechanisms facilitates design of mitigating features to reduce 

damage likelihood. This paper won the IISE 2020 Annual Conference Best Conference 

Division Conference Paper award.   

Chapter VI  presents a paper proposed for publication in a special issue of the 

Coastal Engineering Journal entitled Coastal Hazards and Risks due to Tropical 

Cyclones (abstract submitted). This paper presents detailed hydrodynamics associated 

with development of the CCD and pseudo-Froude models and application to coastal road 

damage with two major hurricane events on the Gulf Coast. This paper represents core 

research that proposes at least 3 new findings related to coastal engineering systems and 

the role of wave celerity functions in predicting the likelihood and degree of damage. 
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Chapter VII  provides an overview of the key research findings and other 

information not included in previous chapters and provides recommendations for 

continued research. It also provides recommendations for continued development and 

research relative to CCD functions and application of systems engineering to coastal road 

systems. Climate and cultural changes will require coastal road systems; land use 

corridors; the natural environment; multimodal users; and, built infrastructure systems, to 

all be reimagined. It closes by identifying future research needs related to this work.  

1.3 Increased Risks from Coastal Hazards 

Climate change and increased populations increase economic and life safety risks 

along coastlines. While impacts of coastal hazards reasonably discourage further 

development in at-risk environments, development of properties and built infrastructure 

in coastal environments continues with correspondingly increased risks [2]. Enhanced 

resiliency of coastal infrastructure and structures reduces risks and expedites recovery. 

Multihazard risks require a systematic approach in defining and evaluating system risk, 

resiliency, vulnerability, and sustainability. Improved systems analysis of coastal hazard 

systems with reduced uncertainties also assists with moving the engineering design 

profession towards greater use of risk-based design methodologies.  

Coastal hazards include storm surge, waves, currents, and storm duration from 

significant coastal events such as hurricanes, cyclones, typhoons, super storms, and 

norôeasters. Coastal transportation systems incur significant damage during such events 

[3-5]. Risk evaluation requires developing models that systematically identify, quantify, 

and evaluate resiliency associated with fragility and recovery curves for environments, 
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populations and infrastructure exposed to these risks. Since resiliency includes the ability 

to prepare for and adapt to changing conditions, correctly evaluating failure modes of 

coastal transportation systems and components is essential to progressing coastal hazard 

risk models. 

1.4 Assessing Resilience of Coastal Infrastructure  

Defining resilience with consistent terminology and quantifiable metrics is a 

critical first step in advancing a systematic approach to resiliency studies. Complex and 

diverse resiliency models result in ambiguous definitions applied to widely varying and 

complex multihazard systems. Review of literature shows widely varying resiliency 

system models. Ayyub [6] suggested a universal definition of resiliency that includes 

ñéthe ability to prepare for and adapt to changing conditions and withstand and recover 

rapidly from disruptions.ò  

Ayyub suggested that monotone measures provide a broader model framework 

than probability theory for resiliency metrics by replacing additive property of probability 

with the weaker property of monotonicity. A monotone measure requires that if A is a 

subset of B, then the measure of A is less than or equal to the measure of B and the 

measure of the empty set must be 0. Each increasing and decreasing subset sequence 

must be semicontinuous when evaluated from below and above. 

Measurable resiliency model functions failure and recovery profiles with 

resilience as a function of these performance profiles and time. Ayyub theorizes that 

impacted systems respond and recover differently based on failure type and infrastructure 
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performance trajectories before and after recovery as shown in Figure 3. Brittle, ductile, 

and graceful categorize different potential failure modes.  

 

Figure 3. Resilience metrics proposed by Ayyub in Figure 3 [6] and Figure 4.10 [7]. 

Distinct quantifiable events relate post-event recovery to pre-event conditions, 

recognizing that varying rates of system performance recovery are critical components of 

an effective model. Degradation terms model system deterioration relative to design life, 
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or alternately, positive improvements made during recovery. Performance segregation 

metrics estimate various levels of performance breakdown during an event relative to 

overall performance at a system level.  

Economic valuation and benefit-cost analysis assesses the effectiveness of system 

enhancement alternatives in improving resiliency. Valuation includes savings in potential 

direct and indirect losses, as well as costs of Ayyubôs model gained wide acceptance in 

generally defining resilience metrics in evaluating system performance (Q) with aging 

effects and failure occurrence estimated with a Poisson process and rate (ɚ) [7].   A 

significant problem exists with monotonic model functions since uncertainties extend 

well beyond time and space boundaries for most systems evaluated in coastal resiliency 

models. System boundaries delineating between complex infrastructure, natural features, 

and climatological or weather systems lack definition in coastal environments.  

Wu, Lo, & Wang [8] alternately suggested that a reliability index more effectively 

ranks likelihood of failure, since probability remains problematic when evaluating built 

infrastructure risks for natural hazards. Current challenges in reliability analysis include 

lack of failure data; difficulty in validating or calibrating calculated probability and 

reliability functions; and, scarcity of statistical data for system modeling. Authors noted 

that uncertainties modeled in a stochastic cost-benefit analysis assist with ranking coastal 

infrastructure projects, including resiliency enhancements. System risks increase in 

response to stronger coastal forces with resultant damages. As uncertainty of the future 

increases with climate change effects along coastlines, future adaptation plans become 

more unreliable.  



10 

Consequence analysis assumes critical importance when both immediate and 

future consequences depend on system vulnerabilities and critical infrastructure design 

decisions. Reliability index methods provide some advantages over failure probability 

methods in comparing alternatives, primarily because analysis does not require full 

knowledge of probability density functions. While relative reliability methods and 

stochastic cost-benefit analysis reduce uncertainty for comparing risk reduction options, 

uncertainties remain related to the probability of system failures. 

Wamsley et al. present a methodology for assessing coastal vulnerability metrics 

using a comprehensive risk assessment and vulnerability model [9]. This model was used 

by U.S. Army Engineer Research and Development Center (ERDC) and Institute for 

Water Resources (IWR) to analyze the North Atlantic Coastal Comprehensive Study 

(NAACS) area, to quantify the vulnerability of populations, infrastructure, and resources 

at risk; and, to identify methods to improve system resilience to coastal storm damage 

(see Figure 15 in Chapter III ) [10].  

The procedures and methodology described in the NAACS methodology and 

linked tools are quite extensive and provide a way to systematically evaluate geospatially 

risk and vulnerability associated with coastal infrastructure. An assessment for Long 

Beach Island, NJ illustrates the suggested approach for evaluating potential impacts of 

storms and sea level change and identification of coastal storm risk strategies. 

The Federal Highways Administration (FHWA) has developed similar guidance 

for coastal highways [11]. FHWA authorized numerous climate change resiliency pilot 

projects and has published extensive documentation relative to the results of those 

studies. The studies pilot-tested the FHWA Climate Change and Extreme Weather 
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Vulnerability Assessment Conceptual Model, and FHWA created a Vulnerability 

Assessment Framework based on feedback from these pilot projects [12, 13].  

An outcome of the assessment model involved South Coast Engineers (SCE) 

evaluating the previously installed sheetpile cutoff wall and gabion countermeasures 

constructed by the Florida Department of Transportation and Development (FDOT) to 

mitigate overwash scour for the Barrier Island Roadway Overwashing from Sea Level 

Rise and Storm Surge: US 98 on Okaloosa Island, Florida project [14]. For that event, 

the overwash was inland and the damage was to the landward side of the road due to 

weir-flow damage as overtopping occurred with flow into Choctawhatchee Bay from the 

Gulf of Mexico during storm surge. The SCE study included developing an adaptation 

decision matrix for engineering considerations and alternative evaluations.  

1.5 Applying Systems Models to Coastal Roads 

This research applied systems engineering to coastal roads in evaluating system 

architecture and reliability functions. The coastal road systems interfaces are quite 

complex since system boundaries extend well beyond the system of interest. Because of 

the interdependence of mobility and modality in the functioning of coastal road systems, 

determining when failure occurs requires defining when the system no longer can meet 

the systems functional and operational requirements. Without preserving connectivity to 

users and other transportation systems, even if the system is physically intact, the coastal 

road system may not meet its functional requirements.  

Local coastal roads represent the system of interest for assessing system 

engineering functional requirements. The local coastal road designation includes those 
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roads maintained by municipalities, counties, or secondary state roads that primarily 

serve local communities. It represents systems not intended for high-volume traffic and 

likely more vulnerable to coastal hazards. CR 257 in Brazoria County along Folletôs 

Island is one such example. System functional requirements were initially developed 

using CORETM software [15].  

Local coastal roads were modeled with ASTAH SysML software and proposed 

the domain model shown in Figure 4 using model-based systems engineering (MBSE) 

methodology [16]. Domain model captures major stakeholders and systems within the 

local coastal road system of interest. Figure 5 illustrates local coastal road conceptual 

system requirements and use cases developed for the object-oriented (OO) SysML 

decomposition model. These figures illustrate the complexity associated with modeling 

complex built-systems in a high-hazard coastal environment setting. Key subsystems 

within the SysML model include: 

¶ Road Structure; 

¶ Road Corridor Enhancements; 

¶ Modality Interconnects; 

¶ Coastal Road Defenses; and, 

¶ Travel Control/Safety. 

Within that SysML model related to coastal hazard vulnerabilities are systems 

involving road structure and coastal road defenses. Model assumes a representative level 

of use cases for local coastal roads. Because of the complexity of the modeled system, the 

level of definition developed for the model illustrates the challenge involved in applying 

SysML to passive infrastructure systems.  
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Figure 4. Local coastal road system domain diagram [16]. 
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Figure 5. Local coastal road conceptual system requirements and use cases [16]. 












































































































































































































































































































































