Contact

Bret M. Webb, Ph.D., P.E., D.CE
Professor
University of South Alabama
150 Jaguar Drive, SH3142
Mobile, AL 36688 USA
Phone: (251) 460-6174
Fax: (251) 461-1400
Email: bwebb@southalabama.edu

Research Positions

Currently seeking an MSCE student to perform research on groundwater impacts to coastal lagoons. A research assistantship is available. Contact me for more details.

Current Research Assistants

SE Students
Garland Pennison

 

MSCE Students
Patrick Hautau
Marshall Hayden
Jackie Wittmann

 

Undergraduate Students
Derek Kelly

Former Students

MSCE Students
Kate Haynes (2018)
Justin Lowlavar (2017)
Bryan Groza (2016)
Kari Servold (2015)
Chris Marr (2013)
Richard Allen (2013)
Miyuki Matthews (2012)

 

Post Docs
Jon Risinger
Jungwoo Lee

Follow Me

Live Site Traffic

Archives

resilience

FHWA GI Pilot title slide... click for animation

We are wrapping up a one-year collaborative project between USA, the Mississippi Department of Transportation (MDOT), and the US Department of Transportation Federal Highway Administration (USDOT FHWA).  This was one of five pilot projects funded by USDOT FHWA to evaluate the use of green infrastructure for improving the resilience of coastal transportation systems. The pilot projects are an initial step in a more comprehensive effort by USDOT FHWA to develop an implementation guide for nature-based solutions that improve resilience. More information about that project is found at the following link {click here}.

 

Our pilot project with MDOT was focused on improving the resilience of a coastal bridge in Mississippi to hurricane hazards and future sea level rise. More specifically, our green infrastructure approach was designed to address the vulnerability of bridge approaches and low-elevation bridge spans. The causes of damage to the bridge during Katrina were determined through the use of hydrodynamic models. A hindcast simulation of Katrina was performed using the coupled ADCIRC+SWAN models. Those results were extracted and used to force a high-resolution, two-dimensional simulation using the XBeach model. An animation of some of those results is provided below.

 

To that end, a pair of vegetated berms were designed in order to mitigate storm damage now and in the future during extreme events.

 

An overview of the entire pilot project is available in a recorded webinar at the following link {click here for webinar}. Ours is the second presentation in the webinar recording (at about the 25-minute mark). Webinar recordings for all five pilot projects, as well as other presentations in an ongoing USDOT FHWA resilience series, can be found at the following link {click here for all webinars}. A brief animation of our presentation slides is available by clicking on the title slide image in this post.

 

Katrina Hindcast using XBeach, forced with ADCIRC+SWAN output…

XBeach animation

Hindcast of Katrina using XBeach: Terrain elevation contour colors correspond to the lower blue-green-brown-white color scale. Selected bathymetric contours are shown as dashed white lines on the surface. The animated water surface is contoured by significant wave height using the blue-white-red scale. Vectors represent the depth-averaged flow magnitude and direction, but only at every 1/10th grid cell for clarity.

 

usalogoblackhighresolution-smaller
The Department of Civil Engineering at the University of South Alabama is seeking to fill a funded Graduate Research Assistantship for a student interested in pursuing a Master of Science in Civil Engineering degree, or a Doctor of Science in Systems Engineering, with concentrations in structural and/or coastal engineering. The initial appointment is for one year (1/2016 – 12/2016) and renewal will be contingent upon quarterly performance reviews (for up to three years ending 12/2018). The position will be competitively funded with a stipend and tuition. The qualified applicant should have an earned BS or MS degree in civil engineering by 12/31/2015, have an interest in coastal and/or structural engineering, and meet all admission standards of the Graduate School, and Department of Civil Engineering, at USA. Applicants should prepare the following materials and upload them to Academic Jobs using the link below: (1) brief statement of interest, (2) resume, (3) university transcripts, (4) a list of three references, (5) a technical writing sample, and (6) GRE and TOEFL/IELTS scores (if applicable).

Application Submission Link: https://academicjobsonline.org/ajo/jobs/5724 (click on the “Apply” link)

 

Position

 

The successful candidate will be appointed to a Graduate Research Assistant position at the University of South Alabama (USA) in the Department of Civil Engineering and will be expected to pursue a Master of Science in Civil Engineering (MSCE), or a Doctor of Science in Systems Engineering, in the specialty areas of coastal and/or structural engineering. The University of South Alabama is a public university in Mobile, Alabama and the campus is located 30 miles from the white-sand beaches of the Gulf of Mexico. The MSCE program at USA focuses on civil engineering in the coastal environment and department faculty research expertise includes the traditional areas of water resources, environmental, transportation, geotechnical and structural engineering as well as coastal engineering.

 

Research

 

The research responsibilities of the student will be to assist in a five-year funded research project focused on improving the resiliency of the built environment to disasters and natural hazards. The project requires original research, laboratory work, numerical analysis, and interpretation of results. The student will perform physical modeling of wave-structure interactions in our new 25-meter wave channel. Additional project details will be made available at an appropriate time. The ideal candidate will:
1) Have demonstrated knowledge of common numerical analysis software (e.g., Matlab)
2) Have demonstrated experience working in a laboratory
3) Have experience or the ability to learn 3D rendering software (e.g., SolidWorks)
4) Be familiar with 3D printing (rapid prototyping) and conventional fabrication techniques
5) Be physically capable of performing their duties in the laboratory facility
6) Be able to travel to meetings and conferences
7) Be legally able to attend school in the United States without sponsorship or travel assistance